Overview of Hydrogen Projects in the Netherlands
Peter de Laat for TKI Nieuw Gas

Summer 2020
Introduction

All around the world hydrogen activities are developing fast and new projects are announced on a weekly basis. Dutch industry, research institutions, consultants, NGO's and governments also take part in these developments and are jointly working on a large range of projects, aimed at realizing the potential role that hydrogen can play in the energy transition to a carbon neutral energy system in 2050. These projects not only focus on the Netherlands, but also seek to connect to our neighboring countries and the North Sea region.

In this slide deck we present an overview of Dutch pilot and demonstration projects on hydrogen which were found in the public domain. We hope that this overview inspires to continue to work on the realization of these projects and to start new ones. Of course this overview is not complete, it is just a picture of what is happening at the moment. If your project is not listed in this overview, or if the information we used is not accurate, please let us know so we can keep this overview up-to-date. Comments can be sent to office@tki-gas.nl.
Explanation of the information box

- **Category**: What is the main subject of the project in the hydrogen chain?

- **Capacity**: What is the size of the project in MW, tons H_2/hour or trucks build?

- **Process phase**: In which phase is the project:
 - concept (idea development)
 - feasibility study (first design)
 - FEED-study (business case)
 - FID (investment decision)
 - execution (implementation, building)
 - commissioning (test run)

- **Project costs**: The amount of subsidy or investment involved.

- **Contact**: Here, more information on the project or initiative is given.
Overview

Introduction

All efforts to make hydrogen sustainable and cost-effective are focused on the vehicle. Dutch research, research institutes, companies, and cities are working on a variety of projects, from generation to storage and utilization. The Netherlands is not only a leader in hydrogen technology, but also in its use as a fuel. In the Netherlands, hydrogen is seen as a way to reduce fossil fuel consumption and combat climate change.

In the table below, we present an overview of Dutch hydrogen demonstration projects in hydrogen, which were chosen in the past. The projects help to demonstrate the potential for hydrogen in various sectors, from transportation to industrial applications. The projects are divided into different categories, such as storage, transportation, and utilization. The table also includes information on the status of each project, such as implementation and testing. The projects are located all over the country, from the north to the south, and from the east to the west. The Netherlands can lead the way in the development of hydrogen technology.
Production

Overview

Production I

Production II
Realisation of a 50 MW Gasification Plant in Terneuzen

The slope that we use most closely resembles the product of Bioethanol. We will only separate the hydrogen from the gas stream after the gas shifter and use the residual streams as fuel for the boiler to generate superheated steam and as fuel for the steam reformer.

Category: production of hydrogen
Capacity: 50 MW/2.500-3.000 kg/h
Process phase: feasibility-study
Project period: 2020 - 2021
Project costs: 150M / DEI subsidy request
Contact: Marc@viktorgoesgreen.be

Partners:
The Rotterdam Electrolyser

Realisation of ~200 MW Electrolyser in Rotterdam

The green hydrogen produced will initially be used at the Shell refinery in Pernis to partially decarbonise the production of fossil fuels. This saves a minimum of 200,000 tonnes of CO₂ per year. This hydrogen can later be used to decarbonise trucks in the transport sector.

Contact: Imtiaas.Ramdjanbeg@shell.com

Project period: 2020 - 2023

Category: production of hydrogen
Capacity: 200 MW / 50,000 kg H₂/day
Process phase: FEED-study, FID 2021
Project costs: unknown

Partners:
Hydrohub GW

The Hydrohub GigaWatt Scale Electrolyser

Conceptual design of a many-electrolyser system of gigawatt size - the size that bridges large-scale renewable power production in offshore wind parks and industrial-scale use of hydrogen for feedstock and energy purposes.

Category: production of H₂
Capacity: 1 GW
Process phase: FEED-study
Project period: 2018 - 2021
Project costs: TKI subsidy
Contact: carol.xiao@ispt.eu

Partners:
Designing a Local Scalable Hydrogen System Together

We want to have impact as a green hydrogen accelerator. That means we look at the most viable scenario for local green hydrogen, oxygen and heat production and utilisation and make this scenario scalable by developing a blueprint for our approach and design.

<table>
<thead>
<tr>
<th>Category:</th>
<th>production of hydrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity:</td>
<td>2 - 5 MW</td>
</tr>
<tr>
<td>Process phase:</td>
<td>feasibility-study & design</td>
</tr>
<tr>
<td>Project period:</td>
<td>2020 - 2021</td>
</tr>
<tr>
<td>Project costs:</td>
<td>650 k</td>
</tr>
<tr>
<td>Contact:</td>
<td>raphael.van.der.velde@witteveenbos.com</td>
</tr>
</tbody>
</table>
Harvesting Extra Hydrogen on Agricultural Land in Use

The mobile H2ARVESTER can be seen as an "extra crop" in the rotational cultivation of arable farmers. The yield of the solar panels can be processed into hydrogen (H₂) and stored, to balance the production and use of the generated energy.

Category: production of hydrogen
Capacity: scalable
Process phase: feasibility-study
Project period: 2027 - 2021
Project costs: unknown
Contact: mvroom@npk.nl

Partners:
Bio-TecH2

Production of Bio-Hydrogen

Creating the basis for an implementation of biohydrogen production from biogenic waste streams and wastewater with smart bacteria in fermentation tanks. Upscaling to large-scale technology to realize the development step of a market-ready establishment.

Category: production of biohydrogen
Capacity: scalable
Process phase: FEED-study
Project period: 2019 - 2022
Project costs: 350 k Interreg subsidy
Contact: www.biohydrogen.eu/kontakt/

Partners:
- FH MÜNSTER University of Applied Sciences
- bio-energie cluster Oost-Nederland
- PlanET
- H₂bv hydrogen solutions
Realisation of a 20 MW Electrolyser in Delfzijl

Operated by Nouryon and Gasunie, it will provide 3,000 tons of green hydrogen per year, reducing CO2 emissions by up to 27,000 tons per year in combined activities with BioMCN.

Category: production of hydrogen
Capacity: 20 MW > 60 MW
Process phase: FID in 2020
Project period: 2020 -
Project costs: 16 M subsidy
Contact: info@hinicio.com
Building a 250 MW Electrolysis Plant in Port of Rotterdam

The new factory will be able to produce 45,000 tons of green hydrogen annually. Because the hydrogen is produced from water with sustainable electricity, CO₂ emissions can decrease by 350,000 tons annually. BP will use the green hydrogen to desulphurise products.

Category: production of H₂
Capacity: 250 MW
Process phase: FEED-study
Project period: 2019 – 2022 (FID)
Project costs: 225 - 300 M
Contact: hgj.regeer@portofrotterdam.com

Partners:
Porthos

CCUS Infrastructure for Blue Hydrogen in Port of Rotterdam

Transfer of grey hydrogen production in the Port of Rotterdam into blue with CCUS into the North Sea bottom. Shell, ExxonMobil, Air Liquide and Air Products committed to this phase for creating a CO₂ infrastructure.

Category: production of blue H₂
Capacity: 2,5 million ton CO₂ per year
Process phase: FEED-study
Project period: 2020 – 2023
Project costs: >20 M
Contact: r.m.de.vries@gasunie.nl

Partners:
Westereems

Building a 100 MW Hydrogen Plant for Westereems Wind Farm

The 100-megawatt capacity plant would be located on the site of the RWE-Eemshaven power plant and will be supplied with power from the adjacent wind farm Westereems owned by innogy.

Category: production of green H₂
Capacity: 100 MW
Process phase: feasibility-study
Project period: 2019 -
Project costs: unknown
Contact: sarah.knauber@innogy.com

Partners:
Hemweg hub Amsterdam

Building a 100 MW Green Hydrogen Plant as part of a Hub

Building a 100 MW hydrogen powerplant on the Hemwegsite as part of a fossil free hub (production, storage and distribution) for providing green electricity, heating and fuels for Amsterdam Metropool Region.

Category: production of green H₂
Capacity: 100 MW
Process phase: feasibility-study
Project period: 2019 -
Project costs: unknown
Contact: https://group.vattenfall.com/nl

Partners: VATTENFAL, metropoolregioamsterdam, Port of Amsterdam
The Production of Blue Industrial Hydrogen in Rotterdam

The production of hydrogen based on natural gas and through the reuse of refinery gases. The CO₂ released during production is captured and stored in empty gas fields below the North Sea or can be reused in the industrial area.

Category: production of H₂
Capacity: several installations
Process phase: FEED-study
Project period: 2020 - 2026
Project costs: 2 B investment
Contact: hgj.regeer@portofrotterdam.com

Partners: Air Liquide, BP, Deltalings, Gasunie, Havenbedrijf Rotterdam, Power Plant Rotterdam, Shell, Uniper en Vopak
GreenH2UB

Creating a Green Hydrogen Ecosystem in Noord-Brabant

Aims to develop a green hydrogen ecosystem. It will contain 3-10 MWA GreenH2UB plants (transformers) balancing the grid with hydrogen production for application and Deployment in industry, heavy mobility and built environment.

Category: production of green H₂
Capacity: 10 x 3-10MW(330k-1m kg/y)
Process phase: feasibility-study
Project period: 2019 - 2030
Project costs: unknown
Contact: www.greenh2ub.nl

Partners:
HEAVENN

H₂ Energy Applications in Valley Environments for Northern NL

The projects support focus on sectoral integration: the large-scale production of green hydrogen as a raw material for industry, the storage, transport and distribution of hydrogen and its application for energy supply for both industry and the built environment and in mobility.

Contact: New Energy Coalition

Category: production H₂ in Energy Valley
Capacity: 30 subprojects
Process phase: execution
Project period: 2020 - 2025
Project costs: 90 M

Partners:
Hydrogen Delta

Aiming for a Gigawatt Factory in the Delta Region

Realisation of a large pilot (on a ~ 100 MW scale) and a large-scale green hydrogen factory (on a ~ GW scale) by 2025. Blue hydrogen is used in the transition to green. In addition, realisation of a hydrogen network in the port area, which is connected to the national network.

Category: production, distribution
Capacity: 1 GW
Process phase: concept
Project period: 2020 - 2030
Project costs: >100 M
Contact: www.smartdeltaresources.com

Partners:
GZI NEXT

A Second Life for the GZI Site in Emmen, with Hydrogen

Together they look at the possibilities of using the existing infrastructure for the generation of green gas through fermentation or gasification and for the generation of hydrogen. Wind, sun and renewable gas are seen as important components in the sustainable energy picture of 2050.

Contact: www.gzinext.nl

<table>
<thead>
<tr>
<th>Category</th>
<th>production, distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>-</td>
</tr>
<tr>
<td>Process phase</td>
<td>feasibility-study</td>
</tr>
<tr>
<td>Project period</td>
<td>2018 -</td>
</tr>
<tr>
<td>Project costs</td>
<td>unknown</td>
</tr>
<tr>
<td>Contact</td>
<td>www.gzinext.nl</td>
</tr>
</tbody>
</table>
Bio Energy Netherlands

Wood Gasification with Production of Hydrogen and CO₂

The wood gasification plant in Amsterdam will extract hydrogen and CO₂ from the syngas, which can be used for transport fuels and in the chemical industry, amongst others. Developing and testing a gas upgrading system linked to a gasifier for production of green hydrogen.

Category: production
Capacity: -
Process phase: FEED-study
Project period: 2019 - 2021
Project costs: TSE 500 k
Contact: info@bioenergynetherlands.nl
Hydrogen Gas Turbine Retrofit to Eliminate Carbon Emissions

To develop a cost effective ultralow emissions (sub 9ppm NOx and CO) combustion system retrofit for existing installed gas turbines in the output range of 1 MW to 300 MW. Fuel flexibility and stable operation is required from 100% natural gas to 100% hydrogen.

Category: production
Capacity: -
Process phase: FEED-study
Project period: 2019 - 2020
Project costs: TSE 500 k
Contact: Huub Koeman, Ansaldo Energia
Building a Windmill that Produces Hydrogen

The goal is to build a 4.8 MW Lagerweij windmill and a 2 MW electrolyser to demonstrate the production of hydrogen by windmills on the ECN test location in the Wieringermeer. This is part of the DUWAAL project that focusses on the hydrogen region of north-western Netherlands.

Category: production
Capacity: 2 MW
Process phase: execution
Project period: 2020 - 2021
Project costs: unknown
Contact: jwlangeraar@hy-gro.nl

Partners:
PosHYdon

Hydrogen Production from North Sea Water on an Offshore Platform

A 1 MW electrolyser in a sea container on the platform, the Q13a, is very suitable for this. It is a fully electrified offshore platform. This electrification with green electricity saves 16.5 kt of CO2 per year.

Category: production
Capacity: 1 MW
Process phase: FEED-study
Project period: 2019 - 2021
Project costs: unknown
Contact: Bas Rijke / neptuneenergy.com

Partners:
Building a 100 MW Hydrogen Plant in Amsterdam for TaTa Steel

Deployment of hydrogen delivered by a 100 MW electrolysis plant to produce fuels and/or basic chemicals with the carbon monoxide (CO) and carbon dioxide (CO$_2$) in the residual gases from the steel production at TaTa Steel.

<table>
<thead>
<tr>
<th>Category:</th>
<th>production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity:</td>
<td>100 MW</td>
</tr>
<tr>
<td>Process phase:</td>
<td>FEED-study</td>
</tr>
<tr>
<td>Project period:</td>
<td>2019 -</td>
</tr>
<tr>
<td>Project costs:</td>
<td>150 M</td>
</tr>
<tr>
<td>Contact:</td>
<td>Jan.Egbertsen@portofamsterdam.com</td>
</tr>
</tbody>
</table>
Molten Metal Methane Pyrolysis

Producing ‘Turquoise’ Hydrogen from Natural Gas

Methane pyrolysis produces hydrogen from natural gas with carbon (and not CO₂) as a valuable by-product. Affordable and commercially applicable within a few years. The applications are diverse. Think of additive for steel, filler in car tires, graphite, dye and soil conditioner.

Category: production, knowledge
Capacity: -
Process phase: concept
Project period: 2019 -
Project costs: unknown
Contact: willem.frens@tno.nl
Hydrogen from Organic Waste

Producing Hydrogen by Gasification of Biomass in 'het Groene Hart'

The pilot plant, the size of four parking spaces, is placed at a civil engineering company. Roadside grass and other organic waste is used for testing. The hydrogen obtained is initially used by Vermeulen Groep, who wants to make their business more sustainable.

Category: production of H₂
Capacity: ?
Process phase: FEED-study
Project period: 2019 - 2021
Project costs: unknown
Contact: info@nettenergy.com
The Production of Green Hydrogen from a GW Windfarm in the North Sea

The objective is to generate 3 to 4 GW of wind energy for hydrogen production by 2030, and possibly 10 GW in 2040. Green hydrogen production of 800,000 tons, prevents around 7 megatons of CO₂ emissions per year.

<table>
<thead>
<tr>
<th>Category</th>
<th>production of H₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>3 - 4 GW wind – 0,8 Mt H₂/y</td>
</tr>
<tr>
<td>Process phase</td>
<td>feasibility-study</td>
</tr>
<tr>
<td>Project period</td>
<td>2020 - 2040</td>
</tr>
<tr>
<td>Project costs</td>
<td>unknown</td>
</tr>
<tr>
<td>Contact</td>
<td>info@gasunie.nl</td>
</tr>
</tbody>
</table>

Partners:
Towards Hydrogen Island Goeree Overflakkee

A 2.5 MW electrolyser will be producing renewable hydrogen and connecting the hydrogen production unit at the Greenpoint hydrogen refuelling station to Stad aan ’t Haringvliet via Energy Park Oude-Tonge. Next will be the upgrade to a 26 MW electrolyser from wind energy.

Category: production, storage, distribution
Capacity: 2.5 MW to 26 MW
Process phase: feasibility-study
Project period: 2017 - 2030
Project costs: unknown
Contact: info@goeree-overflakkee.nl

Partners: 30+ parties
Building a 100 MW Electrolyser in the Eemshaven

The factory will also have an important function for the balance in the electricity system. If the wind farms supply more electricity than is currently needed, it can be converted into hydrogen and stored. If necessary, the hydrogen can be converted back into electricity.

Category: production
Capacity: 100 MW to 1 GW
Process phase: feasibility-study
Project period: FID 2021-2022
Project costs: 50 – 100 M
Contact: info@gasunie.nl

Partners:

HyNetherlands
Blue Hydrogen Den Helder

Empty Gas Fields Play a Role for Blue Hydrogen Production

The hydrogen gas can be produced with green energy from the (large) offshore wind farms that will be built in the coming decades. But even now hydrogen can be produced from natural gas. The released CO$_2$ can be captured and stored in the empty gas fields below the North Sea.

Contact: Thijs Pennink, info@nhn

Category: production
Capacity: large factory
Process phase: feasibility-study
Project period: 2020 - 2022
Project costs: unknown

Partners:
GldH2

A Hydrogen Value-Chain with Multi Purpose in Zutphen

Integral use of locally generated green hydrogen in Zutphen, among others for heating current homes in the city center, using existing gas pipelines and hydrogen-fired central heating boilers. In addition, also for industrial use and mobility, including heavy transport and public transport.

<table>
<thead>
<tr>
<th>Category:</th>
<th>production and deployment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity:</td>
<td>1 MW electrolyser</td>
</tr>
<tr>
<td>Process phase:</td>
<td>feasibility-study</td>
</tr>
<tr>
<td>Project period:</td>
<td>2020 - 2023</td>
</tr>
<tr>
<td>Project costs:</td>
<td>400 k</td>
</tr>
<tr>
<td>Contact:</td>
<td>www.gldh2.nl</td>
</tr>
</tbody>
</table>

Hydrogen Mill Sint Philipsland

To Use Profits to Benefit the Livability of the Community

The initiators of the windmill look for an alternative for the full electricity grid. The use of the national natural gas network for storage, distribution and deployment of their own production of hydrogen. Therefore they hope to make the peninsula Sint Philipsland a hydrogen village.

Contact: pers@stedin.net

Project period: 2020 - 2022
Category: production
Capacity: 1 windmill
Process phase: feasibility-study
Project costs: 126 k subsidy

Partners o.a.:
Storage

Overview

Eneco

Energy Storage in Hydrogen: Applications and Scenarios

Eneco illustrated the storage of extra wind energy in hydrogen, as well as local hydrogen applications at industrial park in Netherlands. Wind-to-Water (WtW) is Arable. By means of systems engineering, development and testing,

- Capacity: 4 MWh
- Storage: 850 m³
- Project status: Phase 2 - Design
- Contact: info@enecoenergy.nl

Hydrogenpilot Oosterwolde

An 1-2 MW Electrolyser Placed at a Solarpark for Netbalancing

Networks extending the generation of peak hours, an electrolyzer is used to convert electricity and variable hydrocarbons in this way a peak load in the grid balance is prevented. The electrolyzer can then be used for hydrogen activities.

Hydrogenpilot Oosterwolde

- Capacity: 1 MWh
- Project status: Construction
- Contact: info@hydrogenpilot.nl

H2Fuel

A Technique for the Production, Storage and Release of H2

The storage takes place in oil and water-conditions in a completely new and innovative way, utilizing pre-existing infrastructure. A network with a capacity of 10% of the hydrogen stored in the process is released, as well as the same amount of energy from the water is converted.

- Capacity: 10 MWh
- Project status: Construction
- Contact: info@h2fuel.com

Cyrus Smith

Creating a Mobile 20 KW Electrolyser for Local Energy Storage

The electrolyzer system of renewable energy sources oversaturates flexibility in an energy network. This is a feasibility study for a mobile on-demand grid support at medium and low voltage level by converting green electricity to hydrogen.

- Capacity: 20 kW
- Project status: Design
- Contact: info@cyrus-smith.com

HyStock

A 1 MW P2G Installation with Large-scale Energy Storage

Converting extra electricity into hydrogen via electrolysis at the site of Energy Storage companies. The electrolyzer is fully used for the project needs to buffer surplus and connection with the excess gas and electricity infrastructure.

- Capacity: 1 MWh
- Project status: Construction
- Contact: info@hystock.com
Enowatts

Energy Storage in Hydrogen: Applications and Scenarios

Enowatts focusses on storage of excess wind energy in hydrogen, as well as local hydrogen applications at industrial park Industriepark Kleefse Waard (IPKW) in Arnhem, by means of systems modelling, development and testing.

- Category: storage
- Capacity: <100 kW
- Process phase: concept
- Project period: 2020 - 2022
- Project costs: 600k (300k grant)
- Contact: sustainable.energy@han.nl

Partners: and 27 others
Hydrogenpilot Oosterwolde

An 1-2 MW Electrolyser Placed at a Solarpark for Netbalancing

Instead of reducing the generation at peak times, an electrolyser is used to convert electricity and water into hydrogen. In this way a peak load in the grid becomes is prevented. The hydrogen can then be used in hydrogen vehicles.

Category: storage, knowledge
Capacity: 1-2 MW
Process phase: execution
Project period: 2019 - 2021
Project costs: unknown
Contact: ben.tubben@qirion.nl

Partners: Qirion, Holthausen Clean Technology, ecomunitypark
H2Fuel

A Technique for the Production, Storage and Release of H₂

The storage takes place under atmospheric conditions in a powder and the release takes place without added energy with very clean water. Hereby not only 100% of the hydrogen stored in the powder is released, but also the same amount of hydrogen from the water is harvested.

Category: storage
Capacity: scale up
Process phase: FEED-study/proof of concept
Project period: 2019 -
Project costs: unknown
Contact: https://h2-fuel.nl

Partners:
Creating a Mobile 20 KW Electrolyser for Local Energy Storage

The fluctuating nature of renewable energy sources necessitates flexibility in our energy infrastructure. This is a feasibility study for a mobile unit that provides grid support at medium and low voltage level by converting green electricity into hydrogen.

Category: storage, knowledge
Capacity: 20 KW
Process phase: concept
Project period: 2019 - 2020
Project costs: TSE 50 k
Contact: J.F. Janssen, Hymatters

Picture: McPhy.com

Partners:
HyStock

A 1 MW P2G Installation with Large-scale Energy Storage

Converting sustainable electricity into hydrogen for transport and industry at the site of EnergyStock storage facility. The EnergyStock facility is ideally situated for this project thanks to buffer capacity and connection with the main gas and electricity infrastructure.

Contact: info@energystock.com

Project period: 2018 - 2020

Category: storage, production

Capacity: 1 MW

Process phase: commissioning

Project costs: EU subsidy

Partners:

energystock

ebn

Nouryon

ECN TNO

Shell
Transportation

Overview

HyWay27
Using Existing Gas Network for the Transport of Hydrogen
Proven the cost of using existing gas infrastructure is reduced to a large extent compared to the transport of hydrogen. How and under what conditions the existing natural gas infrastructure can be used is being investigated.

Category: transport, distribution
Capacity: 125 TWh/year
Phase: Pre-study
Project period: 2020
Contact: tenneT

Hydrogen Sensor Technology
Developing Better Sensors for Natural Gas / Hydrogen Mixtures
The project aims to develop a technology that allows the cost-effective and sufficiently accurate measurement of the composition of natural gas / hydrogen mixtures, where high concentrations of hydrogen are mixed with up to 10%

Partners:

Natural Gas Pipeline to H₂
YARA Receives 4,000 tons of Green H₂ / Year from DOW Chemical
The hydrogen released by Dow crackers is used as a raw material for high-quality Yara products. This will result in a significant decrease in energy consumption of 5.15 PJ per year. In addition, it would reduce CO₂ emissions by 14,000 tons.
HyWay27

Using Existing Gas Network for the Transport of Hydrogen

From the point of view of cost-effectiveness is it important that the existing natural gas infrastructure is reused (in phases) where possible for the transport of hydrogen. How and under what conditions the existing natural gas network can be used is being investigated.

- Category: transport, distribution
- Capacity: 125 Billion Nm³ n.g.u.
- Process phase: Feasibility-study
- Project period: 2020
- Project costs: unknown
- Contact: www.gasunie.nl

Partners:
Hydrogen Sensor Technology

Developing Better Sensors for Natural Gas / Hydrogen Mixtures

The project aims to develop a technology that allows the cost-effective and sufficiently accurate measurement of the composition of natural gas / hydrogen mixtures, wherein high concentrations of hydrogen are mixed (typically up to 90%).

Category: transportation
Capacity: -
Process phase: concept
Project period: 2018 – 2020
Project costs: TKI 225 k
Contact: Huib Blokland, TNO

Partners:
Natural Gas Pipeline to H₂

YARA Receives 4,000 tons of Green H₂ / Year from DOW Chemical

The hydrogen released by Dow crackers is used as a raw material for high-quality Yara products. This will result in an initial decrease in energy consumption of 0.15 PJ per year. In addition, it would reduce CO₂ emissions by 10,000 tons.

Category: transportation
Capacity: 4,000 tons H₂/year
Process phase: commissioning
Project period: 2017 - 2020
Project costs: unknown
Contact: evanoosten@dow.com

Partners:

Knowledge grows
Distribution

H2-hub

Realisation of First Hydrogen Hub at District Level at GO

Communication: Osnabrücker Verkehrs- und Energieservice GmbH

Hydrogen Street

Research into Possibilities for Reusing the Natural Gas Grid

North Sea Wind Power Hub: a Chain in Future Energy Supply

NSWPH

Distribution

H2Milk Run

Mobile Hydrogen Refuelling Station

Daily refuelling of hydrogen via a small truck with a full load of 100 kg at multiple sites every six "milk runs". This initiative enables to start with a hub and milk routes without the need to invest in infrastructure in order to accelerate the use of hydrogen in logistics as a niche.

Category: Distribution
Capacity: 1 kW
Price: €25,000
Projection: 2021-2025
Project status: planning

Contact: info@greenvillage-energy.com

Overview

H2-hub

Realisation of First Hydrogen Hub at District Level at GO

Communication: Osnabrücker Verkehrs- und Energieservice GmbH

Hydrogen Street

Research into Possibilities for Reusing the Natural Gas Grid

North Sea Wind Power Hub: a Chain in Future Energy Supply

NSWPH

Distribution

H2Milk Run

Mobile Hydrogen Refuelling Station

Daily refuelling of hydrogen via a small truck with a full load of 100 kg at multiple sites every six "milk runs". This initiative enables to start with a hub and milk routes without the need to invest in infrastructure in order to accelerate the use of hydrogen in logistics as a niche.

Category: Distribution
Capacity: 1 kW
Price: €25,000
Projection: 2021-2025
Project status: planning

Contact: info@greenvillage-energy.com

Overview

H2-hub

Realisation of First Hydrogen Hub at District Level at GO

Communication: Osnabrücker Verkehrs- und Energieservice GmbH

Hydrogen Street

Research into Possibilities for Reusing the Natural Gas Grid

North Sea Wind Power Hub: a Chain in Future Energy Supply

NSWPH

Distribution

H2Milk Run

Mobile Hydrogen Refuelling Station

Daily refuelling of hydrogen via a small truck with a full load of 100 kg at multiple sites every six "milk runs". This initiative enables to start with a hub and milk routes without the need to invest in infrastructure in order to accelerate the use of hydrogen in logistics as a niche.

Category: Distribution
Capacity: 1 kW
Price: €25,000
Projection: 2021-2025
Project status: planning

Contact: info@greenvillage-energy.com

Overview

H2-hub

Realisation of First Hydrogen Hub at District Level at GO

Communication: Osnabrücker Verkehrs- und Energieservice GmbH

Hydrogen Street

Research into Possibilities for Reusing the Natural Gas Grid

North Sea Wind Power Hub: a Chain in Future Energy Supply

NSWPH

Distribution

H2Milk Run

Mobile Hydrogen Refuelling Station

Daily refuelling of hydrogen via a small truck with a full load of 100 kg at multiple sites every six "milk runs". This initiative enables to start with a hub and milk routes without the need to invest in infrastructure in order to accelerate the use of hydrogen in logistics as a niche.

Category: Distribution
Capacity: 1 kW
Price: €25,000
Projection: 2021-2025
Project status: planning

Contact: info@greenvillage-energy.com

Overview

H2-hub

Realisation of First Hydrogen Hub at District Level at GO

Communication: Osnabrücker Verkehrs- und Energieservice GmbH

Hydrogen Street

Research into Possibilities for Reusing the Natural Gas Grid

North Sea Wind Power Hub: a Chain in Future Energy Supply

NSWPH

Distribution

H2Milk Run

Mobile Hydrogen Refuelling Station

Daily refuelling of hydrogen via a small truck with a full load of 100 kg at multiple sites every six "milk runs". This initiative enables to start with a hub and milk routes without the need to invest in infrastructure in order to accelerate the use of hydrogen in logistics as a niche.

Category: Distribution
Capacity: 1 kW
Price: €25,000
Projection: 2021-2025
Project status: planning

Contact: info@greenvillage-energy.com
The Hydrogen-Hub serves as an energy center for the residential area. This creates the balance between supply and demand of green energy. The H2-hub can serve as a buffer for the electricity grid as well as for a future hydrogen grid and a link to mobility is made.

Category: distribution
Capacity: district level / residential area
Process phase: FEED-study
Project period: 2020 - 2023
Project costs: pending
Contact: info@hylifeinnovations.nl

Partners:
H2Milk Run

Mobile Hydrogen Refuelling Station

Daily delivery of hydrogen via a small truck with a full functional HRS at multiple sites a day (a "Milk Run"). This initiative enables to start with fuel cell forklift trucks without the need to invest in infrastructure, in order to accelerate the use of hydrogen in logistics in a region.

Category: distribution
Capacity: 1 truck
Process phase: feasibility study ready
Project period: 2020 - 2021
Project costs: 1.25 M
Contact: willem.stehouwer@mep.energy

Partners:
Hydrogen Street

Research into Possibilities for Reusing the Natural Gas Grid

The grid operators in the Green Village investigate the behavior of gas stations and their meters. They also research the necessary safety measures, such as new working methods and tools. This gas grid is therefore available as a testing site for other parties to do research.

Contact:
Elbert Huijzer, Alliander

Category: distribution
Capacity: -
Process phase: commissioning
Project period: 2020 - 2025
Project costs: unknown
Contact: Elbert Huijzer, Alliander

Partners:
North Sea Wind Power Hub; a Chain in Future Energy Supply

The Hub-and-Spoke concept consists of modular hubs in the North Sea connecting offshore wind farms with interconnectors to bordering North Sea countries and facilitates sector coupling through power-to-Hydrogen conversion.

Category: distribution
Capacity: 10 > 30 GW
Process phase: FEED-studies
Project period: 2020 -
Project costs: unknown
Contact: info@northseawindpowerhub.eu
Deployment: Energy Supply

Overview

Power2Power / Power2X
Decentralised Energy Management System Based on Hydrogen
The Energy Supply system aims to connect decentralized energy supply to energy storage systems. Hydrogen is used for storage, with a focus on hydrogen refueling stations for hydrogen vehicles. The system is designed to be flexible and can be scaled to meet different needs.

H₂ Air Base Leeuwarden
Air Base Leeuwarden Focuses on Hydrogen and Biofuel
This project focuses on the production and use of hydrogen and biofuels at an air base. The goal is to reduce the environmental impact of aviation. The project includes the development of a hydrogen refueling station at the air base.

Hydrogen-to-Magnium
Conversion of the 1,300 MW Magnium E-Plant into a Fuel Plant by Hydrogen
The Magnium E-Plant is being converted to use hydrogen as a fuel source. This conversion is expected to reduce greenhouse gas emissions and improve energy efficiency. The plant will use hydrogen to power its operations and supply hydrogen to nearby industries.

Hysolar
The Production and Supply of Green Hydrogen in Nieuwegein
The goal of this project is to produce green hydrogen for use in the Nieuwegein area. The project involves the installation of a hydrogen production facility and the development of a distribution network. The hydrogen produced will be used for various applications, including fuel for vehicles and power generation.
Power2Power / Power2X

Decentralised Energy Management System Based on Hydrogen

The P2P/P2X system converts sun/wind electricity on site into hydrogen to match green energy offer and demand. The buffered hydrogen can be used for electricity, heat or (hydrogen) gas. Green energy becomes available 24 hours a day and no more large fluctuations in the grid.

<table>
<thead>
<tr>
<th>Category:</th>
<th>deployment in energy supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity:</td>
<td>1 – 10 MW</td>
</tr>
<tr>
<td>Process phase:</td>
<td>FEED-study</td>
</tr>
<tr>
<td>Project period:</td>
<td>2020 -</td>
</tr>
<tr>
<td>Project costs:</td>
<td>unknown</td>
</tr>
<tr>
<td>Contact:</td>
<td>rob.vandersluis@mtsa.nl</td>
</tr>
</tbody>
</table>

Partners:
Hydrogen-to-Magnum

Conversion of the 1,320 MW Magnum E-Plant into Fueled by Hydrogen

The natural gas plant will first use blue hydrogen after the conversion, where the CO$_2$ is captured and stored underground in Norway. In time, the plant will only use green hydrogen (obtained by electrolysis). Gasunie is investigating the possibility of storage of hydrogen in caverns.

- **Category:** deployment in energy supply
- **Capacity:** 3 x 440 MW
- **Process phase:** FEED-study / execution
- **Project period:** 2020 - 2030
- **Project costs:** unknown
- **Contact:** k.g.wiersma@gasunie.nl

Partners:
H₂ Air Base Leeuwarden

Air Base Leeuwarden Focuses on Hydrogen and Biofuel

It is investigated whether the base itself can produce and store hydrogen, also for use in the vehicles and in the built environment. There are also plans to produce hydrogen with the 10 ha large solar park that has been developed. The hydrogen should also serve as emergency power.

Category: deployment in energy supply
Capacity: 5 MW solar power
Process phase: feasibility-study
Project period: 2019 - 2022
Project costs: unknown
Contact: www.defensie.nl

Partners:
Hysolar

The Production and Supply of Green Hydrogen in Nieuwegein

The organization is installing a 2 MW electrolyser, which is linked to a large solar park. Eventually, the project will produce 250 tons of hydrogen per year. Approximately 750 cars or 25 buses will be able to run on this every day for an entire year. 11 Hyundai Nexo’s have already been delivered.

- Category: deployment in energy supply
- Capacity: 250 ton H₂ / year
- Process phase: execution
- Project period: 2020
- Project costs: unknown
- Contact: www.hysolar.nl

Partners:
Deployment: Industrial

Hydrogen as a Fuel for Industrial Heating Processes

Development of Fuel Flexible Burner Concept
This project aims to prepare energy-intensive industrial production processes (e.g., glass, steel, and ceramic sectors) for a gradual transition from natural gas to hydrogen. The fuel flexible burner concept can handle any fuel of liquid and gaseous type.

Category: Industrial development of FFBC
Capacity: 100 kW to 200 MW
Process phase: Conceptual
Project period: 2020 - 2021
Project cost: 100 kV€
Contact: Sven.v.Observ@nev.nl

NEDMAG on Hydrogen

Demonstration of H₂ Heating a 2 MW Oil Furnace
This demonstration project focuses on the industrial application of a natural gas-fired furnace site of NEDMAG in Venlo. The furnace will be fueled by varying mixes of hydrogen and natural gas to assess safe and reliable furnace operation. A Fuel Adaptive Control System (FACS) is installed.

Category: Industrial development of FFBC
Capacity: 2 MW
Process phase: Conceptual
Project period: 2020 - 2021
Project cost: Reference
Contact: N.Lemmens@nedmag.nl

E-THOR

Realisation of a 0.5 MW Electrolyser in the Botlek Area
Investigation of the technical and economic feasibility of a 0.5 MW electrolyser at E-THOR in the Botlek. This considers the possibilities for processing CO₂ and other flue gas into hydrogen and using this component to enhance the methane content.

Category: Industrial development of FFBC
Capacity: 0.5 MW + 100 Nm³
Process phase: Conceptual
Project period: 2020
Project cost: Reference
Contact: r.f@e-thor.nl
Hydrogen as a Fuel for Industrial Heating Processes

Development of Fuel Flexible Burner Concept

This project aims to prepare energy-intensive industrial production processes (e.g. glass, food and ceramic sector) for a gradual transition from natural gas to hydrogen. The fuel flexible burner concept can handle any mix of natural gas and hydrogen.

Category: industrial deployment of H₂
Capacity: 100 kW – 200 MW
Process phase: execution
Project period: 2020 - 2021
Project costs: TSE 670 k
Contact: Sander.Gersen@dnvgl.com

Partners: Industry consortium of 30 partners
Demonstration of H_2 Heating a 2 MW Oil Furnace

In this demonstration project the furnace of the industrial magnesium salt mining site of NEDMAG in Veendam will be fueled by varying natural gas/ hydrogen blends. To assure safe and reliable furnace operation, a Fuel Adaptive Control System is installed.

<table>
<thead>
<tr>
<th>Category:</th>
<th>industrial deployment of H_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity:</td>
<td>2 MW</td>
</tr>
<tr>
<td>Process phase:</td>
<td>execution / commissioning</td>
</tr>
<tr>
<td>Project period:</td>
<td>2020 - 2021</td>
</tr>
<tr>
<td>Project costs:</td>
<td>unknown</td>
</tr>
<tr>
<td>Contact:</td>
<td>H.Hamstra@Nedmag.nl</td>
</tr>
</tbody>
</table>
Realisation of a 5 MW Electrolyser in the Botlek Area

Investigation of the technical and economic feasibility of a 5 MW electrolyser at AVR and Tronox in the Botlek. This considers the possibilities for processing CO / CO\(_2\) from residual gas, and possibly also fluid gas, into chemical compounds such as methanol.

<table>
<thead>
<tr>
<th>Category:</th>
<th>industrial deployment of H(_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity:</td>
<td>5 MW > 100 MW</td>
</tr>
<tr>
<td>Process phase:</td>
<td>feasibility-study until may 2020</td>
</tr>
<tr>
<td>Project period:</td>
<td>2020</td>
</tr>
<tr>
<td>Project costs:</td>
<td>unknown</td>
</tr>
<tr>
<td>Contact:</td>
<td>rijk@deltalinqs.nl</td>
</tr>
</tbody>
</table>

Partners:
Deployment: Mobility

Overview

Deployment: Mobility I

Deployment: Mobility II
Deployment: Mobility I

Overview

Deployment

Hydrogen Heavy Truck
Development of 50 Ton Electric Trucks

Hydrogen Toddler
Development of demonstration of Hydrogen Toddler

H2Drive
Implementation of Hydraulic Booster

H2Mobile
A modular, ultra-modular hydrogen mobile station

HY2REVIVE
Hydrogen solution for Heavy-duty, Large Transport in the EU

H2Drives
Energy Mover

Hydrogen Range

DRIESS to PPGCV
Transportation of Critical Goods by Plug-in hybrid Electric Vehicles

HYCRES
Hydrogen & renewable energy solutions for the transport sector

HYRENGO
Motor Hydrogen Road Network in Excellence

HYPRM
HYPRM O2

H2Mobil
The mobile hydrogen station

DynaVOLT
Development of a hydrogen access in the automotive

H2Mobil
Hydrogen System Solution for the passenger transport in the EU

Hybrid
Hybrid Electric Trolley-Buses

Intelligent transport systems

Hybrid
Hybrid Electric Trolley-Buses

Intelligent transport systems

Hydrogen Trolley
Hydrogen Trolley as a sustainable alternative to Diesel Trolley

RIVET
RIVET

SRT 2H
Building a hydrogen-powered Heavy Goods Truck

RENEW
Motor Hydrogen & Logistics Network Excellence

RENEW
Motor Hydrogen & Logistics Network Excellence
Deployment: Mobility II

Overview

Deployment: Mobility I

Hydrogen Region 2.0

High V.G.O City

H2point

Developing a Hydrogen Filling Station in Hasselt

H2 Filling Stations Den Helder

To Develop a Hydrogen Filling Station for Maritime and Road Transport

5 H2 Filling Stations by Greenpoint Fuels

45 Hydrogen Taxies

Use of 45 Hydrogen Taxies for Special Use (AM2O) Transportation

Hydrogen Ships: Luxembourg

Investigating the Possibility of Ships Sailing on Green Hydrogen

Hydrogen Naval

Development of a vessel less relying on primary hydrog 2020.

Specification: Wind-based Inland Mobility (SWIN)

Deployment: Mobility II

Assessing the Integration of Public Hydrogen Bus Transport in Cities

High V.G.O City

H2point

Developing a Hydrogen Filling Station in Hasselt

H2 Filling Stations Den Helder

To Develop a Hydrogen Filling Station for Maritime and Road Transport

5 H2 Filling Stations by Greenpoint Fuels

45 Hydrogen Taxies

Use of 45 Hydrogen Taxies for Special Use (AM2O) Transportation

Hydrogen Ships: Luxembourg

Investigating the Possibility of Ships Sailing on Green Hydrogen

Hydrogen Naval

Development of a vessel less relying on primary hydrog 2020.

Specification: Wind-based Inland Mobility (SWIN)

Deployment: Mobility II

Assessing the Integration of Public Hydrogen Bus Transport in Cities

H2point

Developing a Hydrogen Filling Station in Hasselt

H2 Filling Stations Den Helder

To Develop a Hydrogen Filling Station for Maritime and Road Transport

5 H2 Filling Stations by Greenpoint Fuels

45 Hydrogen Taxies

Use of 45 Hydrogen Taxies for Special Use (AM2O) Transportation

Hydrogen Ships: Luxembourg

Investigating the Possibility of Ships Sailing on Green Hydrogen

Hydrogen Naval

Development of a vessel less relying on primary hydrog 2020.

Specification: Wind-based Inland Mobility (SWIN)
Hydrogen Yard Tractor YT203-H2

Development and Demonstration of a Hydrogen Yard Tractor

Proof of concept is expected to be ready for delivery in the second half of 2020. Currently, the fuel-cell system is in the final testing phase. The YT203-H2 specification covers all the operational requirements for different applications such as logistics, distribution and ports for the global market.

Category: deployment in mobility
Capacity: 1 Yard Tractor
Process phase: Proof of concept in 2020
Project period: 2018 - 2020
Project costs: supported by DKTI-subsidy
Contact: https://zepp.solutions/
Implementation of Ship Hybridisation

Part of the project is the implementation of a hydrogen-electric powertrain in inland vessel “Vera Cruz” and the realisation of a new hydrogen-electric tour boat for Zilvermeeuw in national park “de Biesbosch”.

Contact: https://zepp.solutions/

Category: deployment in mobility
Capacity: 2 pilots in NL (more EU-wide)
Process phase: FEED-study
Project period: 2019 - 2022
Project costs: 9 M Interrreg 2 Seas grant
Contact: https://zepp.solutions/

Partners:
Port of Oostende (Lead partner), Economical Impuls Zeeland, Solent University, WaterstofNet, Zilvermeeuw, Delft University of Technology, Polytechnical University Hauts-de-France, GEO Aqua, Yerseke Engine Services, Hydrid Marine, zepp.solutions, LLoyd’s Register EMEA, Vives University of applied Sciences, Vera Cruz Shipping, Parkwind
A real-life Trial Preparing Hydrogen Mobility in the BeNeLux

The roll out of a basic network of hydrogen refuelling stations in the BeNeLux through the deployment of 8 HRS and 80 FCEV along the BeNeLux sections of the TEN-T Network Corridors, to enable the creation of a sufficiently covered European wide network of HRS.

- **Category**: deployment in mobility
- **Capacity**: 70 MPa HRS, FCEV
- **Process phase**: execution
- **Project period**: 2017 -
- **Project costs**: 17.5 M CEF + DKTI transport
- **Contact**: michel.honselaar@waterstofnet.eu

Partners:
Hydrogen Heavy Truck

Development of 50 Ton Bulk Carrier on Hydrogen

Bosch’s Beton logistics department is increasingly faced with restrictions on construction projects within the environmental zones of large cities. The efficient delivery of concrete retaining walls (photo) is seriously disrupted by this. Hydrogen can be the solution in this case.

Category: deployment in mobility
Capacity: 2 trucks and a HRS[400kg/d]
Process phase: FEED-study
Project period: 2020 - 2024
Project costs: unknown
Contact: brandjan@boschbeheer.com

Partners:
Building 6 Hydrogen-powered Garbage Trucks

The trucks will be operating in different locations, so that municipalities and collection companies can become acquainted with hydrogen technology. A unique aspect is that service companies are also involved in the demonstration project.

Category: deployment in mobility
Capacity: 6 trucks
Process phase: execution
Project period: 2020 -
Project costs: unknown
Contact: stefan.neis@waterstofnet.eu
Rhine Hydrogen Integration Network of Excellence

Aiming for 10 ships running on hydrogen in 2030 on the Rhine between Rotterdam - Genoa, fueled by (at least) three hydrogen filling stations and three consortia of private parties.

Category: deployment in mobility
Capacity: 10 ships and 3 filling stations
Process phase: feasibility study
Project period: 2020 – 2030
Project costs: unknown
Contact: hgj.regeer@portofrotterdam.com

Partners: the Province of South Holland, the State of North Rhine-Westphalia, Ministry of Infrastructure and Water Management, Province of Gelderland, Port of Rotterdam Authority, Duisburg Port Authority, RhineCargo, BCTN, EICB, Nouryon, Covestro, Air Products, Future Proof Shipping, HTS Group, NPRC, AirLiquide and Koedood.
Development of a Green Hydrogen Economy in the Northwestern NL

The realization of a first hydrogen gas station in Alkmaar, two hydrogen trucks, a hydrogen sweeper, the development of an integrated storage, transport and distribution system for hydrogen. It will be combined with a 4.8 MW hydrogen mill.

Category: deployment in mobility
Capacity: 2 MW
Process phase: FEED-study
Project period: 2020 -
Project costs: DKTI 2 M
Contact: jwlangeraar@hy-gro.nl

Partners:
System-Based Solutions for H₂-Fueled Water Transport in NW Europe

Development of a hydrogen supply chain for shipping (retrofit) inland vessels. A new hydrogen powered port vessel will be built in Amsterdam. In Belgium, a H₂ refueling system suitable for open sea operation, will be developed and tested.

Category: deployment in mobility
Capacity: 1 port vessel
Process phase: FEED-study
Project period: 2019 - 2022
Project costs: 7.2 M total EU project
Contact: Jan.Egbertsen@portofamsterdam.com
Refuse Vehicle Innovation and Validation in Europe

Integrating fuel cell powertrains into 15 vehicles and deploying them in 8 sites across Europe. An additional task will explore the potential for ‘Waste-to-Wheel’ business models where the fuel cell trucks are combined with more affordable green hydrogen sourced from waste plants.

Category: deployment in mobility
Capacity: 15 waste trucks
Process phase: execution
Project period: 2019 - 2021
Project costs: 8.7 M total EU project
Contact: stefan.neis@waterstofnet.eu

Partners:
5-10 H₂ Filling Stations by OrangeGas

Designing and Building a Hydrogen Filling Point at Existing Gas Stations

Designing and building 5-10 hydrogen fueling stations in Amsterdam, Utrecht, Zwolle and Leeuwarden. At the locations it will be possible to refuel hydrogen with both 700 bar (passenger cars) and 350 bar (larger vehicles such as buses).

Category: deployment in mobility
Capacity: 350/700 Bar filling stations
Process phase: FEED-study
Project period: 2019 -
Project costs: DKTI + BENEFIC subsidy
Contact: info@orangegas.nl

Partners:
Designing and building a Hydrogen Filling Point at Existing Gas Stations

After a long preparation, we can finally report that the installation of our 350/700 Bar hydrogen filling point is ready. At this point, anyone can help with testing by refueling.

Category: deployment in mobility
Capacity: 350/700 Bar filling point
Process phase: commissioning [in operation]
Project period: 2019 - 2020
Project costs: unknown
Contact: willem.frens@tno.nl
SkyNRG

Green Hydrogen for Producing Sustainable Aviation Fuel (SAF).

Use of hydrogen from to refine frying fat into sustainable kerosene and biopropane in the SkyNRG initiative in Delfzijl. From 2022, the plant will annually produce 100,000 tons of SAF, as well as 15,000 tons of bioLPG, as a byproduct. CO₂ reduction would be 270,000 tons a year.

Contact: info@skynrg.com

Project period: plant open in 2022
Category: deployment in mobility
Capacity: 40 MW electrolyser capacity
Process phase: execution
Project costs: unknown
Contact: info@skynrg.com

Partners:
50 Fuel Cell Electric Buses

Towards Clean Public Transport with Hydrogen in the Netherlands

Demonstration of 50 hydrogen buses on Dutch public transportation. This is part of JIVE 2 subsidies and part of a greater European project. The hydrogen buses will run in the provinces of South Holland, Groningen and Drenthe.

Category:	deployment in mobility
Capacity:	50 buses
Process phase:	execution
Project period:	2018 - 2020
Project costs:	25 M total EU project
Contact:	marc.vandersteen@rebelgroup.com

Partners o.a.:
H2-SHARE

Hydrogen Solutions for Heavy-duty (27 tons) Transport in NW Europe.

For large heavy-duty vehicles which travel longer distances, electric trucks with a hydrogen fuel cell range extender are possible zero-emission solutions. In the EU, such vehicles are not yet commercially available but have enormous potential. ‘H2-Share’ aims to unlock this potential.

Contact: stefan.neis@waterstofnet.eu

Category: deployment in mobility
Capacity: 1 truck, 1 mobile filling station
Process phase: commissioning
Project period: 2020 - 2023
Project costs: 1.7 M Interreg subsidy
Contact: stefan.neis@waterstofnet.eu

Hydrogen Trains as a Sustainable Alternative for Diesel Trains

In March 2020 train rides are made with a Coradia iLint-hydrogen train, to test whether this type of train can run in the timetable. The province wants to make rail transport in the north of the Netherlands more sustainable, which is currently still largely carried out by diesel trains.

Category: deployment in mobility
Capacity: 1,000 km per filling
Process phase: commissioning
Project period: 2020
Project costs: unknown
Contact: info@prorail.nl

Partners:
Diesel to PFCEV

Building a Retrofit for a 30 kW Plug-in Fuel Cell Electric Vehicle

The project includes R&D towards an experimental 30kW fuel cell range extender system, which will be tested in a PFCEV city truck. After success, a production line is designed for retrofit conversion kits and a more generic application than vehicles.

Category: deployment in mobility
Capacity: 30 kW
Process phase: feasibility-study
Project period: 2018 - 2020
Project costs: TSE 460 k
Contact: sales@newelectric.nl
H2-Drive

Incentive package for 90 Additional Hydrogen Cars in the Arnhem Region

With a 50% discount on refueling and much more benefits, like hydrogen car introductory training, pick-up service and replacement transport. This promotion is intended for people who live and/or work a maximum of 30 kilometers from the center of Arnhem.

<table>
<thead>
<tr>
<th>Category:</th>
<th>deployment in mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity:</td>
<td>90 cars</td>
</tr>
<tr>
<td>Process phase:</td>
<td>commissioning</td>
</tr>
<tr>
<td>Project period:</td>
<td>2020 -</td>
</tr>
<tr>
<td>Project costs:</td>
<td>1 M</td>
</tr>
<tr>
<td>Contact:</td>
<td>www.h2-drive.nl</td>
</tr>
</tbody>
</table>

Partners:

[Arnhem](#), [Gelderland](#), [gloedcom municatie](#), [H4](#), [HERWERS HYUNDAI](#), [kiemt](#), [K PLUS](#)
Energy Points

Refueling Stations with Hydrogen From and For the Future

Energy Points are modern hydrogen fueling stations with groundbreaking design. Holthausen is currently working on the realisation of 2 hydrogen filling stations in Groningen and Amsterdam. These 2 projects are being worked out and realised in collaboration with the municipalities.

Category: deployment in mobility
Capacity: 2 refilling stations
Process phase: execution
Project period: 2020-2020
Project costs: DKTI-subsidy + 500 k A’dam
Contact: lead@holthausen.nl

Partners:
The Development of a Hydrogen Filling Station in Breda

This filling station will supply green hydrogen to both passenger vehicles (700 bar) and heavy-duty vehicles (350 bar). PitPoint is in discussion with the waste service Breda considering its garbage trucks, which is an important potential customer.

Category: deployment in mobility
Capacity: 1 refilling station
Process phase: FEED-study
Project period: 2020 - 2022
Project costs: Interreg and DKTI-subsidy
Contact: info@pitpoint.nl

Partners:

PITPOINT

CLEAN FUELS

WATEROFFNET
High V.LO City

Accelerating Integration of Public Hydrogen Bus Transport in Cities

High V.LO City does this by supporting the deployment of hydrogen buses in public transportation and the construction of hydrogen filling stations at the strategic locations Delfzijl and Antwerp by PitPoint.

Contact: info@pitpoint.nl

Project period: 2012 - 2022

Category: deployment in mobility
Capacity: 2 refilling stations
Process phase: execution
Project costs: FCH-subsidy
Contact: info@pitpoint.nl

Partners:
Developing a Hydrogen Filling Station in Roosendaal.

This project is localised near the Rotterdam-Antwerp hydrogen pipeline adjacent to the A17 highway. The next project of H2Point will be a hydrogen refilling station in Oosterhout. The project is subsedised by TDKI and BENEFIC.

Category: deployment in mobility
Capacity: 2 refilling stations
Process phase: execution
Project period: 2020 Roosendaal ready
Project costs: 1.5 M per station
Contact: www.h2point.nl

Partners:
To Develop a Hydrogen Filling Station for Maritime and Road Transport

As part of the project, Damen Shipyards will develop a hydrogen ship that will be offered to a pool of potential users. To supply the electrolyser, ENGIE is going to realize a 2.6 MWp solar park locally. The expected maximum capacity will be around 400 kg of green hydrogen.

Category: deployment in mobility
Capacity: 2 refilling stations/ 400 kg \(\text{H}_2 \)
Process phase: FEED-study
Project period: 2019 - 2021
Project costs: 1.4 M DKTI
Contact: info@podh.eu
5 H₂ Filling Stations by Greenpoint Fuels

To Develop and Construct 5 Hydrogen Filling Stations in NL

Greenpoint Fuels currently has pending permit applications for 5 hydrogen filling stations. Creating a network of tapping points; the filling stations will be located in Zeewolde, Ede, Bleiswijk, Oude-Tonge and Sliedrecht.

<table>
<thead>
<tr>
<th>Category:</th>
<th>deployment in mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity:</td>
<td>5 H₂ filling stations</td>
</tr>
<tr>
<td>Process phase:</td>
<td>FEED-study / execution</td>
</tr>
<tr>
<td>Project period:</td>
<td>2019 - 2023</td>
</tr>
<tr>
<td>Project costs:</td>
<td>unknown</td>
</tr>
<tr>
<td>Contact:</td>
<td>info@greenpointfuels.nl</td>
</tr>
</tbody>
</table>

Partners:
Use of 45 Hydrogen Taxi’s for Special Care (WMO) Transportation.

This is the first hydrogen taxi fleet in the Netherlands. 35 Toyota Mirai’s are driving in The Hague and 10 in Ede. “The client requires us to be available 24/7 with our fleet. Due to the large range of the hydrogen car and the fast refueling, Noot Personenvervoer can offer this.”

Project period: 2019 - 2020
Project costs: unknown
Contact: info@noot.nl

Category: deployment in mobility
Capacity: 45 H₂ taxi’s
Process phase: commissioning

Partners:

Noot Personenvervoer
Toyota
Den Haag Dealerbedrijven
Hydrogen Ships Lauwersoog

Investigating the Possibility of Ships Sailing on Green Hydrogen

The coalition wants to start with the test ship 'Ecolution' of Wubbo Ockels. After a first test ship, the sustainable port coalition in the province of Groningen wants to expand to fishing vessels, tour boats, the brown fleet and agricultural vehicles in the future.

Category: deployment in mobility
Capacity: scale up
Process phase: FEED-study
Project period: 2020 - 2030
Project costs: 1.2 M
Contact: www.wadduurzaam.nl

Partners:
Speckless Water-based Inland Mobility (SWIM)

Hydrogen Watertaxi

Development of a water taxi running entirely on hydrogen. In 2021, it will be the first time on this scale that a commercial boat comes into operation running entirely on this zero-emission fuel. This project was developed within the zero-emission shipping program called THRUST.

- Category: deployment in mobility
- Capacity: 1 taxi boat
- Process phase: FEED-study/execution
- Project period: 2020 - 2023
- Project costs: confidential
- Contact: https://thrust.enviu.org/

Partners o.a.:
Deployment: Built Environment

On-Demand Hydrogen

Hydrogen Church

Hydrogen City

Hydrogen Neighbourhood

Application of Hydrogen as an Energy Carrier in Wageninger

Retrofit Hydrogen Condensing Boiler

Power-To-Gas (PtG) Phase II

On-Demand Hydrogen

Hydrogen Church

Hydrogen City

Hydrogen Neighbourhood

Deployment: Built Environment
Application of Hydrogen as an Energy Carrier in Wageningen

Operated use of Hydrogen gas as replacement for natural gas in local housing schemes (heating) and industry (steam generation), by generating Hydrogen at the location with an innovative electrolyser concept and using local solar farms for energy.

Category: deployment in built environment
Capacity: residential area level
Process phase: FEED-study / POC
Project period: 2020 -
Project costs: unknown
Contact: https://h2h.nu/

Partners:
Retrofit Hydrogen Condensed Boiler

Towards the Introduction of H₂ in the Built Environment

The new developed boiler is a retrofit of an existing domestic natural boiler in which several components, such as the burner and flame guarding system are replaced. The boiler will be tested in a field demo in 2020-2021.

Category: deployment in built environment
Capacity: 20 kW
Process phase: Feasibility-study / POC
Project period: 2020 - 2021
Project costs: unknown
Contact: Gerard.Martinus@gasterra.nl

Partners:
Power-To-Gas (P2G) Phase II

Power to Hydrogen for Residential Heating of Apartments in Rozenburg

Decentralized integration of wind and solar energy via hydrogen from electrolysis for the heat supply of the built environment. The hydrogen is delivered by the regular natural gas pipelines to the boiler house of the apartment complex where the first hydrogen boilers are tested.

Contact: albert.vandermolen@stedin.net

Project period: 2018 - 2023

Category: deployment in built environment
Capacity: 500 residential houses
Process phase: execution
Project costs: unknown

Partners: STEDIN, Ressort Wonen, remeha, Gemeente Rotterdam, DNV-GL, GasTerra, BEKAERT
On Demand Hydrogen

Pilot Heating Houses with On Demand Hydrogen Production

The production and combustion of hydrogen gas is exactly the same in volumes. Nothing needs to be stored or transported over a longer distance. If there is a heat demand, the hydrogen generator will make fuel. Only a jerry can of treated water under the cupboard.

Contact:
info@vandalen-installaties.nl

Category: deployment in build environment
Capacity: 200 kW
Process phase: commissioning
Project period: 2020
Project costs: 120 k
Contact: info@vandalen-installaties.nl
Hydrogen Church

Heating the Monumental Eusebius Church with Hydrogen

Using hydrogen from a sustainable source to heat a monumental church is new and offers an opportunity to reduce the natural gas consumption of monuments.

Category: deployment in build environment
Capacity: depends on chosen scenario
Process phase: FID
Project period: 2019 -
Project costs: depends on chosen scenario
Contact: Dick.Breteler@HyMatters.com

Partners:
H2 Ready Central Heating Burner

Developing a H₂ Burner System as a Retrofit.

The goal is to develop a burner system that can replace the current natural gas burner. This means that future boilers for hydrogen can be produced. However, already installed boilers can also be converted with a retrofit.

Category: deployment in built environment
Capacity: -
Process phase: FEED-study
Project period: 2018 - 2020
Project costs: TSE 250 k
Contact: Ellart de Wit, Hygear

Partners:
Hydrogen Neighbourhood Hoogeveen

100 Newly Built Houses and 430 Existing Houses Connected to Hydrogen

The newly built Nijstad-Oost residential area has been designated as a demonstration project for the application of hydrogen in newly-built houses. The destination plan will soon be brought into execution. Construction is expected to start in 2021. Other houses will be connected later.

Category: deployment in built environment
Capacity: 530 houses
Process phase: FID
Project period: 2020 - 2022
Project costs: TSE 400 k
Contact: Kees Boer, gem. Hoogeveen

Partners:
Hydrogen City

City on 't Haringvliet Switching to Green Hydrogen.

The hydrogen is to be used to heat the 600 houses in the village. The existing gas network can be used for the purpose, so no new network needs to be laid. The four "gas district stations" that still operate on natural gas are being converted and a different gas meter must be installed.

Category: deployment in built environment
Capacity: 600 residential houses
Process phase: FEED-study
Project period: 2018 - 2030
Project costs: unknown
Contact: stadaardgasvrij@gmail.com

Partners:
Hydrogen Neighbourhood

Pilot Heating with Hydrogen in Neighbourhood Berkeloord, Lochem

At Berkeloord there are relatively old, sometimes even monumental buildings. Residents are looking for sustainable alternatives for natural gas. Since cooking cannot be done with hydrogen; induction would be the most obvious option. In winter 2020/2021 the pilot will be carried out.

<table>
<thead>
<tr>
<th>Category</th>
<th>deployment in built environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>10 - 15 residential houses</td>
</tr>
<tr>
<td>Process phase</td>
<td>FEED-study</td>
</tr>
<tr>
<td>Project period</td>
<td>2020 - 2021</td>
</tr>
<tr>
<td>Project costs</td>
<td>unknown</td>
</tr>
<tr>
<td>Contact</td>
<td>info@lochemenergie.net</td>
</tr>
</tbody>
</table>

Partners:
Realisation of first Hydrogen House in Stad aan ’t Haringvliet

The house is the first "normal" house with its own green hydrogen installation. This allows energy to be generated, stored and reused completely independently. The house is also full of other architectural and technical innovations, f.e. home automation and pre-fab walls.

Category: knowledge
Capacity: 100 kWh storage / 5 kW output
Process phase: commissioning
Project period: 2019 - 2021
Project costs: pending
Contact: www.innovathuis.nl

Partners:
Hydrohub MW

The Hydrohub MW Test Centre
Development of an open-innovation infrastructure for stress testing of water electrolysis technology at an industrially relevant scale.

Category: knowledge
Capacity: 500 kW (2 x 250 kW)
Process phase: execution
Project period: 2018 - 2022
Project costs: TKI subsidy
Contact: carol.xiao@ispt.eu
Hydrohub HyChain

Hydrohub - Energy Carriers and Hydrogen Supply Chain

A series of exploratory studies focused on a strategic understanding of the drivers behind global emergence of hydrogen value chains, covering aspects such as sources of supply, demand, transport, costs, environmental impact and public engagement.

Category: knowledge
Capacity: > 100 GW
Process phase: concept
Project period: 2018 - 2021
Project costs: Energy studies, TKI subsidy
Contact: carol.xiao@ispt.eu
This HyReady project aims to encourage the industry to “Be ready for Hydrogen”. Practical and uniform engineering guidelines are being developed to support the introduction of hydrogen to the gas grid (from transmission systems to end-users). Results are easily available from a Wiki site.

Category: knowledge
Capacity:
Process phase: execution
Project period: 2017 -
Project costs: unknown
Contact: Albert.vandenNoort@dnvgl.com
H2 Hub Twente

A Hub for Training and Application of Hydrogen Technology

The hub and the associated facilities are available for all kinds of parties who wish to conduct research, receive training and / or develop applications.

<table>
<thead>
<tr>
<th>Category</th>
<th>knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>scalable</td>
</tr>
<tr>
<td>Process phase</td>
<td>execution</td>
</tr>
<tr>
<td>Project period</td>
<td>2019 - 2022</td>
</tr>
<tr>
<td>Project costs</td>
<td>1.3 M</td>
</tr>
<tr>
<td>Contact</td>
<td>m.butterhoff@overijssel.nl</td>
</tr>
</tbody>
</table>

Partners:

![Partners Logos]

Contact: m.butterhoff@overijssel.nl
First Element Marine Power

Developing and marinating a 40 kW hydrogen fuel cell based propulsion configuration for regional shipping suitable for class type approval. The knowledge obtained is presented to the sector, with the aim of bringing the integration of hydrogen and fuel cells one step closer to reality.

Category: knowledge
Capacity: 40 kW
Process phase: final report ready
Project period: 2018 - 2020
Project costs: 500 k TSE subsidy
Contact: www.nedstack.com
Temporary Conversion from Natural Gas to Hydrogen

It is important to gain knowledge and experience what it takes to convert an existing gas network and homes into hydrogen. In order not to cause inconvenience to residents, but to gain experience, we carry out these activities in vacant demolition houses in Uithoorn.

Category: knowledge
Capacity: district network and 14 homes
Process phase: execution
Project period: 2020 - 2021
Project costs: unknown
Contact: frank.vanalphen@stedin.net

Partners:
Groene Waterstof Booster

Development of the Hydrogen Value Chain in the Northern NL

Connecting parties and initiatives, accelerating innovation in the hydrogen chain and making it sustainable through green hydrogen, and achieving sustainable growth and employment. This by testing, learning and demonstrating in an open innovative environment.

Category: knowledge
Capacity: scalable
Process phase: execution
Project period: 2020 -
Project costs: 1.2 M subsidy
Contact: www.groenewaterstofbooster.nl

Partners:
Missie H2

The Netherlands, a Hydrogen Country

Water is our source of energy. It gives us new possibilities. That is why we choose course and introduce the Netherlands to the splashing energy of hydrogen. That is our mission, with the athletes of TeamNL as the driving force to the Tokyo 2021 Olympic Games.

Category: knowledge, communication
Capacity: -
Process phase: execution
Project period: 2020 -
Project costs: unknown
Contact: www.missieh2.nl

Partners:
A Sustainable Hydrogen Economy in 2030 in the Netherlands

At least 27 public and private organizations in the Netherlands are building on an infrastructure for green hydrogen. In a guide to the Dutch government, they formulated four concrete pillars for the rapid and effective development of the hydrogen economy in the Netherlands.

Category: knowledge
Capacity: -
Process phase: execution
Project period: 2018 -
Project costs: unknown
Contact: Joris Thijssen, Greenpeace

Partners o.a.:
The goal is to establish a structural collaboration between the electrolyser knowledge parties. I.e. the manufacturers of electrolyzers and the knowledge institutes, as well as Dutch component suppliers. They aim to take a concrete step in the cost-efficiency of electrolyser technology.

Category: knowledge
Capacity: -
Process phase: execution
Project period: 2017 - 2020
Project costs: FSE 250 k
Contact: Info@tno.nl
Alkaliboost

Developing Better Alkaline Electrolyser Stacks

The power of alkaline technology is that the electrochemical stacks are relatively cheap, because no expensive or noble metals are used. The committed parties are developing and testing new alkaline stack designs that make it possible to operate at a much higher current density.

Category: production, knowledge
Capacity: -
Process phase: concept
Project period: 2018 - 2023
Project costs: TSE 500 k
Contact: Gerhard Remmers, Nouryon

Partners:

Nouryon AkzoNobel TU/e
HYDROGREENN

HYDROGen Regional Energy Economy Network Northern NL

Promoting business development of hydrogen applications in or from the northern Netherlands. The hydrogen applications are used to contribute to the green innovation of energy management, mobility, industry and chemistry. There are now 80+ partners involved.

Category: knowledge, networking
Capacity: -
Process phase: execution
Project period: 2019 -
Project costs: unknown
Contact: spijksma@vnoncw-mkbnoord.nl

Partners o.a.: AkzoNobel, Arcadis, Holthausen, Gasunie, ChemPort, New Energy Coalition, Nuon, Shell, Gasterra, Entrance, TNO, Stork, Provincie Groningen, SBE, Rosato, Siemens en Ministerie van Infrastructuur en Milieu
Research on Obstacles on Hydrogen Deployment

HyDelta is a national cooperation program that removes barriers that delay or halt hydrogen projects. The project that are stranded struggle for example with gaining permits, infrastructural challenges and a lack of clarity about safety regulations.

Category: knowledge, networking
Capacity: -
Process phase: execution
Project period: 2020 -
Project costs: unknown
Contact: www.hydelta.nl
Hydrogen House Apeldoorn

Demonstration and Learning Model House for Training Employees

The aim is to initially train approximately fifteen technicians and teach them how to use hydrogen and water networks. They will soon have to be able to apply this in practice, first of all in project Lochem. The house is also intended for the installer of Remeha hydrogen boilers.

Category: knowledge
Capacity: 1 house
Process phase: execution
Project period: 2020 - 2021
Project costs: 240 k
Contact: info@alliander.com

Partners:
Fieldlab

Experimenting with Small-scale Generation of Hydrogen on Farms

TNO and WUR are starting a hydrogen pilot project in the Fieldlab in Lelystad. Here experiments are being conducted with small-scale generation of hydrogen on farms, using solar and wind energy produced at the same location.

Category: knowledge
Capacity: small-scale
Process phase: execution
Project period: 2020 - 2025
Project costs: unknown
Contact: peter.eecen@tno.nl

Partners: